Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations
نویسندگان
چکیده
A method is developed for incorporating diffusion of chemicals in complex geometries into stochastic chemical kinetics simulations. Systems are modeled using the reaction-diffusion master equation, with jump rates for diffusive motion between mesh cells calculated from the discretization weights of an embedded boundary method. Since diffusive jumps between cells are treated as first order reactions, individual realizations of the stochastic process can be created by the Gillespie method. Numerical convergence results for the underlying embedded boundary method, and for the stochastic reaction-diffusion method, are presented in two dimensions. A two-dimensional model of transcription, translation, and nuclear membrane transport in eukaryotic cells is presented to demonstrate the feasibility of the method in studying cell-wide biological processes.
منابع مشابه
Stochastic Reaction-Diffusion Methods for Modeling Gene Expression and Spatially Distributed Chemical Kinetics
In order to model fundamental cell biological processes including the transcription, translation, and nuclear membrane transport of biological molecules within a eukaryotic cell it is necessary to be able to approximate the stochastic reaction and diffusion of a small number of molecules in the complex three dimensional geometry of a cell. For this reason a method is developed that incorporates...
متن کاملStochastic reaction-diffusion kinetics in the microscopic limit.
Quantitative analysis of biochemical networks often requires consideration of both spatial and stochastic aspects of chemical processes. Despite significant progress in the field, it is still computationally prohibitive to simulate systems involving many reactants or complex geometries using a microscopic framework that includes the finest length and time scales of diffusion-limited molecular i...
متن کاملSpontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases.
Bi-stable chemical systems are the basic building blocks for intracellular memory and cell fate decision circuits. These circuits are built from molecules, which are present at low copy numbers and are slowly diffusing in complex intracellular geometries. The stochastic reaction-diffusion kinetics of a double-negative feedback system and a MAPK phosphorylation-dephosphorylation system is analys...
متن کاملA Statistical Study of two Diffusion Processes on Torus and Their Applications
Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...
متن کاملEfficient stochastic simulation of reaction–diffusion processes via direct compilation
We present the Stochastic Simulator Compiler (SSC), a tool for exact stochastic simulations of well-mixed and spatially heterogeneous systems. SSC is the first tool to allow a readable high-level description with spatially heterogeneous simulation algorithms and complex geometries; this permits large systems to be expressed concisely. Meanwhile, direct native-code compilation allows SSC to gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2006